Can Heat Pump Water Heaters Teach the California Duck to Fly?

Pierre Delforge, NRDC, <u>pdelforge@nrdc.org</u>
Ben Larson, Ecotope, <u>ben@ecotope.com</u>
Joe Vukovich, NRDC, <u>jvukovich@nrdc.org</u>

Study objective: Assess heat pump water heater demand flexibility potential in California

Study approach

Simulation

Ecotope simulation model

Lab testing

- 4 HPWH models
- Calibrate Ecotope's model
- Validate simulation results

- √ NEEA-validated
- ✓ Integrated in CA Title 24

PG&E 2024 Hourly Marginal Costs

Chart shows annual average of hourly values for simplicity. Study has hourly values for entire year.

Time of Use rate: designed by NRDC for this study

Control Strategies: <u>How</u> to optimize HPWH operation for price schedules

3 levels of control "smartness":

1) Simplest: On/off timer

2) Smarter: Smart load-up / soft shed

3) Smartest: Hourly price optimization, grid-connected

Simulation Runs

Parameters:

i alameters.	
Input values	# values
Price signalsUtility marginal costsCustomer time of useCEC Time Dependent Valuation	3
UnitsHybrid HPWH, HP-only, ERWH50, 65, 80 gallons	11
Max water temp: 125, 135, 145, 155	4
Climate zones: 16 CA climate zones	16
Draw patterns: 1-5 bedrooms	5
Control strategiesOn/off timerSmart load-up / soft shedOptimal price	3
Total Scenarios	31,680

California climate zones:

Peak demand coincidence

HPWH Unmanaged

HPWH Managed

Off-Peak Solar: 8 am – 3 pm Peak: 5 pm – 9 pm

Cost Savings by Control Strategies

^{*} Hybrid HPWH with 135F load-up set point

Lab testing results: Compressor efficiency decreases as set point increases

Measured compressor efficiency at higher water temperatures:

Optimal Control Temperature

Cost and Energy Savings By Set Point

(Load-up/Shed Control Strategy, TOU Price Signal)

Operational costs savings

Operational savings depend on what controls optimize for:

	Customer bill savings	Utility marginal cost savings
Optimizing for customer costs (TOU)	-15% to -20%	-35%
Optimizing for grid marginal costs	0% to +5%	-60%

Outcomes scorecard*

	ERWH Unmanaged	ERWH Managed	HPWH Unmanaged	HPWH Managed
Effective storage capacity / evening	-	1.3-1.8 kWh	-	0.5-0.6 kWh
Energy use (kWh/y)	2,570	2,640 (+3%)	1,070 (-58%)	1,090 (-57% / +2%)
Resistive kWh	100%	100%	16%	14%
Consumer bills	\$500	\$380 (-25%)	\$190 (-60%)	\$160 (-70% / -15%)
Utility marginal costs	\$180	\$80 (-55%)	\$60 (-70%)	\$40 (-80% / -35%)

^{* 3-}bedroom house, CZ12 (Sacramento) ERWH 50-gallon + 30F thermal storage HPWH 65-gallon +10F thermal storage

How about GHGs?

	ERWH	ERWH	HPWH	HPWH
	Unmanaged	Managed	Unmanaged	Managed
CO2e (kg)	684	497 (-27%)	275 (-60%)	229 (-66% / -16%)

Wait, why not higher GHG reductions from load management?

- GHG accounting methodology issue:
 - o ACM* gives limited credit for mid-day load
 - Uses dispatch, not build marginal accounting
 - Does not appropriately value load shifting
- HPWH load management would yield much higher GHG benefits under build marginal methodology

^{*} CPUC Avoided Cost Model 2018: http://www.cpuc.ca.gov/General.aspx?id=5267

Key Takeaways

Significant potential for costeffective HPWH load shifting

- Can shift virtually all of evening load to middle of day
- 2. 130-140 F load-up temperature "sweet range"
- 3. 15-20% customer savings potential
- 4. 30-60% utility savings potential

Requires:

- 1. Smart control technology
- Customer compensation mechanisms: TOU rates and/or bill credits
- 3. Incentive programs and supportive regulations (e.g. building code)
- 4. Appropriate GHG accounting methodology for load shifting

